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Reorganization Free Energy for Electron Transfers at
Liquid-Liquid and Dielectric Semiconductor-Liquid Interfaces

R. A. Marcus
Noyes Laboratory of Chemical Physics

California Institute of Technology
Pasadena, CA 91125

Abstract

The reorganization free energy is calculated for a reaction between (i) two

reactants, each in its own dielectric medium, separated by an interface, and (ii)

between a reactant and some semiconductors. An expression is also given for the rate

constant of an electron transfer reaction at an interface between reactants in two
immiscible phases. Under certain conditions it is siown that the reorganization

energy for the two-immiscible liquid system is the sum of the electrochemical
reorganization energies of the two reactants, each in its own respective solvent. The
reorganization energy for a semiconductor/liquid system can differ considerably from

the corresponding metal/liquid value, even a factor of two.
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Introduction

Some time ago I derived an expression for the reorganizational free energy X in
electron transfer reactions occurring in homogeneous solutions'-3 and at metal-

solution interfaces. 3- 5 Since that time there have also been studies on electron

transfers at liquid-liquid interfaces 6-9 and at semiconductor-liquid interfaces.' 0 -12 In

the present paper we obtain expressions for the reorganization free energy at such
interfaces, using the same approximations as those used earlier.3 In the case of a

metal-liquid surface, whose results 3-5 are given for comparison (eq. (11), below), the

detailed electronic structure properties'3 , 14 of the metal surface are neglected and a
local dielectric response is used for the liquid. 15

Earlier, using a charging path to produce a system with a nonequilibrium

dielectric polarizatiGn, we obtained a classical statistical mechanical expression for

the free energy of a system having longitudinal polarization fluctuations.' 6 This
result was then expressed in terms of the free energies of certain hypothetical

equilibrium systems, 16 and proved convenient for deriving expressions for
reorganization free energy, 3 as well as for obtaining other properties, such as spectral

shifts in polar media for simple and less simple (e.g., ellipsoidal) solute shapes.' 7 The
principal assumptions used were (1) linearity of the response of the medium to a

change in electric field, (2) a static treatment of the low-frequency motions, and (3)
instantaneous response of the electronic polarization in the system to a change in

electric field. We also comment on the applicability of the relation to systems with
linear but nonlocal dielectric response.

Theory

We consider a nonequilibrium system having some charge distribution, denoted

by pl, in an environment which would be in equilibrium with a different charge

distribution po. Expressed in terms of equilibrium free energies, the free energy of

formation G i  -G 1e of this nonequilibrium system from a similar system, but one
which is in thermal equilibrium, is given by eq. (15) of ref. 16:
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-G- Geop-Ge (1)
I 1 1-0 1-0

where G e is the free energy of the equilibrium system with charge distribution p1 ,

Ge1-0 is that of an equilibrium system with a hypothetical charge distribution p, -P0,

and Ge,OP1 -0 is the corresponding quantity when only an electronic response of the

medium or media to the charge occurs. (In the last case, any dielectric constant would

be replaced by the optical dielectric constant.) All quantities in eq. (1) are calculated

at a fixed position of the reactant(s).

While statistical mechanical expressions can be introduced in the RHS of eq. (1)
we employ here the dielectric continuum expressions. We first consider the case of

two dielectrics having a plane interface at z = 0, z being the coordinate normal to the

interface. A charge q is fixed at a distance d from the interface in the liquid labelled

1, which occupies the region z > 0. The static and optical dielectric constants are

denoted by D,$ and DOP, i indicating the phase (i = 1 for z > 0, i = 2 for z < 0). The

electrostatic potential qi satisfies several boundary conditions at the interface:' 8

lim D 1 a/az = lim D 2 o/az
z-O +  z-0-

lim 4/ax = lim u/ax (2)

lira 4W/0= lia 4l/dy,
0+

Z -00 Z--

where x and y are coordinates parallel to the planar inter'. ce

The present results are obtained for infinite dilution, in the case of any liquid

phase, although work terms to reach the interface in the presence of added electrolyte

can be included.' 9 To include an ion atmosphere reorganization term eq. (1) can still

be used, as in ref. 3, when the response of an ion atmosphere to a change in charge is

in the linear regime. In the case of a semiconductor-liquid system the semiconductor

is treated here for simplicity as undoped, or as having a small enough concentration

of electrons and holes that eqs. (3) and (4) below remain valid in Lhe interfaciql

region. We expect to treat other systems later.
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The expression for iV at any field point (x, y, z), denoted by P, is given by (3) and

(4) when these boundary conditions are satisfied:18

SD 2 -D. z> (3)
1D (02 +D)R 1 '

and

V(x,y,z) -D 1 +D2 )R1 Z z<Q (4)

Here, R1 is the distance from the ion to the field point P, R1 ' is the distance to P from

the electrostatic image of the ion. The image lies at the same x andy as the ion but at
Z= -d.

If we consider an ion of radius a, the electrostatic potential w acting on this ion

surface is obtained 20 by setting RI = a and R1 ' = R in eq. (3), R being the distance

between the center of the ion and its image. Thus, R = 2d, and so is twice the

distance to the interface. The free energy Ge is then obtained by charging the ion

from q = 0 to q = q, calculating f1 dq, and subtracting the corresponding quantity at

R =oin a vacuum (D, =D2 = 1). We thus obtain, for this equilibrium system,

q 2 D D2 D I q 2

G_ -= 1D_ j (5)
2DI I a (D2 +D 1 )R 2a

In a treatment of electron transfer reactions, in which an ion (or molecule) has a

charge er before the electron transfer and a charge ep after, (and there could be

several such ions, erj -* epj,j = 1,2, for example) the charge which determines the

distribution of coordinates in the transition state e was shown earlier to be given

by 1-3

e = er + m(er - ep) (6)

where m is a Lagrangian parameter; m is determined from the thermodynamic

properties of the system, e.g., eq. (79) of ref. 3 for a homogeneous reaction, eq. (80) for

a reaction at a metal-solution "nterfsce, or from related equations which canl be
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derived for the other systems. (We give eq. (79) later.) Thus, the charge distribution

P1 -P 0 in eq. (1) corresponds to a charge e -er and hence to m(e*- eP).

We then obtain at a fixed position of the reactant,2.3

G n- G = m 2 X m2 (X +X (7)

where X, is any vibrational contribution from the reactants, due to changes in the

equilibrium values of their vibrational coordinates 2,3 due to the reaction; X, is given

by eq. (9) below, and Xo is given by

/ 1-e) 2 DP-Do s sD
-X = ( 2 1 2 ..i 1 (R =2d) (8)

- --a DOP Ds 2R DOP+DP D0 p D2+D'1' D 8 '
a 2a ~2 1 1

where Ae = er - eP.

The reorganizational parameter X, can be written2 ,3 in terms of the

displacements qojr - qoP of the equilibrium values of the normal vibrational

coordinates and the "reduced" normal mode force constants ki,

X- , k(9)

when a reactant has the same vibrational symmetry in the initial (r) and final (p)

state. The sum is over all normal coordinates of the single reactant in the above case

and of the pair of reactants in the next case. The kj is related to the normal mode

force constants before (k r) and after (k P) reaction by 3

k. = 2krkP/ (kr+kp) . (10)
i i J J

Normal mode force constants appear in eq. (9). A use of purely diagonal bond-
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stretching force constants has been shown to lead to considerable error,21 when the

bond-bond cross-terms are not small.

Equation (8) was derived for the case of two dielectric media. It is useful to see
what it reduces to in the case where phase 2 is a classical metallic conductor. In this
limit both D2 's are replaced by infinity and eq. (7) becomes

X (Ae ) 2 (1 ) 1 ~ (R =2d) (1)
2' (,- D oP Ds a R

1 1

an expression obtained earlier. 3-5

We consider next the case where there are two reactants, one in each phase.
The electrostatic potential arising from ions 1 and 2 is now given by the sum of two
terms: For z > 0, these terms arise from eq. (3) for ion 1, by setting q = qj. The second
contribution for z> 0 comes from ion 2, and can be obtained from eq. (4) by setting

q = q2 there and replacing R1 by R2 t, the distance from ion 2 to the field point P:

q, D 2 -D1 2q 2
qI(x,y,z) = -(+ 2 I+D2)R2 (z>O) (12)

1 1 (D2+ D)dR/ (D+DR

Similarly, qi for z< 0, is obtained by interchanging the 1 and 2 symbols:

(XZ)q21 D1-D 2 ) 2q1  (z<O) (13)

D2 (R2 (D1+D2 )R2  (D 1 +D 2 )RI

The relevant potential xVl used in the charging of ion 1 is obtained from eq. (12) by
setting19 R 1=a1, R2 =R, and R1'= 2d,, where d1 is the distance from the center of ion
I to the interface. The relevant potential T 2 used in the simultaneous charging of ion
2 is obtained from (13) by setting there R = a2. R I = R, and R2' = 2d 2

To obtain a free energy, TIdqI + 7 2dq2 is integrated from qI = 0 to q1 and from
q,=O to q2, by setting q, =yql, q2=yq 2 and integrating over y from 0 to 1. To obtain
Ge, the corresponding quantity at R = for a vacuum is subtracted. We then have
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2 2 2 2
q, q2_qq_ (D 2 -D 1 2q 2q,Ge= - 1 + " - (14)2a I D 1  2a 2 D ) 4d 1DI 4d 2D2 (D2 +D) R(DI+D 2 )

Replacing q, by m(elr - eP)= - mAe, q2 by m(e2r_ e2P)- + mAe and then using eq. (1)

we have, at fixed position of the two reactants,

Gnon _ G' , = m2 (A 0+A), (15)

where X is given by eqs. (9) and (10) and where

2
2  

2 (e)
2 (DI-DP D$-DX0 (Ae)2 + (Ae)2 1 1 (Ae2 2 --- 12 -D1

2a 2a, D0  I 4d, DP(D0P±D0 P) DC1D 8 +D8) /
1 1 2 1 2 1 2 1

(16)

(4e)2  Dop-DOP D1D 1(Ae+D
_ _ _1 1 2

4d 2 D
0 (DOP+D2P) D2sDa+DI R DP +D D'+
2 1 2 21 1 2

When the two media are identical (D IB=D 2 D8, DIOP = D 2OP =-DIP) eq. (16) reduces to

an expression obtained earlier:'

X0 = (Ae)2 ( +--+ .1)( 1 1) (17)2a I 2a 2  R DoP Da

In an electron transfer reaction one also needs to havel-5, when the reactants
approach each other from R = -, the corresponding work term Wr and the work term
- wp to remove the products to R = ®. The free energy barrier to reaction AG, is

then given by1,

AG
t  w r + M 2

.
(18)

r

In the case of a homogeneous reaction the Lagrangian multiplier m satisfies the
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equation- 5

- (2mn+l),X = AG O, + wP-w W, (19)

where AGO' is the "standard" free energy of reaction in the prevailing medium. In the

case of an electrochemical reaction, m is given by the electrochemical analog of eq.
(19) (e.g., for a metal electrode eq. (80) of ref. 3).

A dielectric continuum expression for Wr at infinite dilution for the system can

be obtained by subtracting from the G" for reactants 1 and 2, the value for G e when

they are far from the interface. At infinite dilution, this result for Wr is then found

from eq. (14) to be

r2 er2 D8 D r er

((el) (e2 D2-D1) +2 e12 (20)

1 1D 4d2D$)D2D (D3+D~

Similarly, u) is obtained by replacing each charge er by the corresponding value for

the products, eP. In practice, more elaborate expressions for Wr and uf are more

appropriate, because of solvent structure-breaking and structure-forming effects of

the ions, in addition to any electrolyte effects on wr and wp.' 9

We have treated the metal in the metal-liquid system as a classical conductor. 3',

For the sake of completeness we note here some recent work on electronic structure

effects on the calculated electrostatic image potential. There are many quantum

mechanical studies of the forces between a charge and a metal,' 3 designed in part to

treat experimental data on work functions, LEED, and other topics. For distances

greater than about 3 A the interaction energy Ge of an electron and the surfaces is

approximated by'"
e2

G e (d>3 A) (21)
4(d- do,)

where d is the distance from the charge to the solid surface 22 and do is a small

quantity for which estimates have been made. 22 To fit some LEED intensity line

shapes eq. (21) for d>3 A was joined linearly to a given value at d=0.2b An

alternative model, described as hydrodynamic and phenomenological, gave even

smaller corrections to the classical image charge formula. 23
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From eq. (21) the electrostatic potential qL' due to the image acting on the
charge is

q

2(d-d) (22)

In a nonlocal treatment of the metal, Dzhavakhidze et al.24 used a Thomas-
Fermi screening approximation for the wave number k dependence of the dielectric

constant of the metal

DMS =DM (1+k2/k2)  (23)

where k. -'is the Thomas-Fermi screening length (-0.5 A) and DM_ 1 to 2. Results were

obtained for X0 for the metal-liquid interface, both for the case of a local dielectric

response of the solvent and for a nonlocal response with an exponential decay on

separation distance. In the former instance X0 was given by

2 2 f(RkDID8)) ( - (R >2k - ) (24)X=2 a R ,DOP D s  s

where fix) is a known function which tends to unity when x- (it is fairly close to

unity for x-3) and which passes through zero at x-0.25 and then becomes negative for

smaller x. It would appear that this type of treatment would also lead to an image
repulsion of an approaching ion in solution, instead of image attraction, when

RkDM/D, <0.25. Such a result might be capable of direct experimental test. It would
also be useful to explore this question further theoretically, using instead the type of

treatment of the metal surface given in ref. 13, which is more rigorous than
phenomenological ones such as that in ref. 14.

Reaction Rate Constant

(i) Two Immiscible Phases

We calculate first a rate constant kr for reaction between two reactants, one in

each of the two immiscible phases. Its units can be defined via25

-- dt k, rnn2A ,(25)
t k 1f 2
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where N1 is the number of molecules of type 1 in phase 1, n, is the mean

concentration of reactant 1 in phase 1, n2 is the mean concentration of reactant 2 in

phase 2 and A is the interfacial area. The units of kr are seen to be cm 4 molecule- 1

sec -. We let v (determined below) be a "volume" (units of cm 4) such that in a unit
area of interface the center-to-center distance of the pair of reactants lies in (R,

R + AR), where AR, defined in the Appendix, is the region over which there is a

significant contribution to the ET process, and where reactant 1 lies wholly in phase

1 and reactant 2 in phase 2. If K is some Landau-Zener factor 26 for the ET in this
region of R and v is some relevant frequency for the molecular motion then k, can be

written, approximately, as

k K -Ve r (26)

where A,Gr is given by eqs. (18) and (.9). The terms wr and wP in those equations

now denote the work required to bring the reactants (Wr) and the products (wp) from

R = - to a mean reactive separation distance Rt( - a1 + a 2). Such work terms may

include not only that in eq. (20) but, as already noted, other effects.

In the Appendix it is shown that the leading term in an expression for an

effective v is

v = 2n (a1 +a2)(R)3  (27)

when a sharp boundary at the interface is assumed.

When the two phases are "immiscible" liquids some interpenetration of the two

phases may occur, so that the reactants may then be able to approach each other over

a wider solid angle than that indicated in Fig. 1. For example, if the centers of ions 1

could each penetrate the other phase to the extent that each center could even reach

the interfacial boundary, but such that the reactants wouldn't overlap one would

obtain (Appendix A) eq. (28) instead of eq. (27).

v - n (a, +a3 AR (28)

-10-



The rate of electron transfer typically decays with distance as exp (-PR), (some
data are summarized in ref. 27) and AR = 1/p (Appendix). Using a value of 3- 1 A- 1, AR

is about 1 A. When a, + a,-5 A, the v in eq. (28) is then about a factor often larger than

that in eq. (27). A molecular investigation of the interface and of the extent of

interpenetration of the reactants in the two-liquid case would be desirable. We plan

to compare elsewhere the above results for v, and those given earlier for X, with some

available data on rate constants. Equation (16) for X0 is restricted, of course, to the

case when there is no interpenetration. If only one of the two ions can interpenetrate,

v has a value intermediate between that in eq. (27) and in eq. (28).

(11) Comment on Semiconductor-Solution Electron Transfers

Equations (18) and an electrochemical analog of eq. (19) have been applied to

electron transfers at semiconductor electrodes, typically with X regarded as a

parameter."' A general X includes3 the reorganization of the solvent dielectric

polarization, of the vibrational coordinates, of the ion atmosphere in solution, and

depending on the system, of the electron and hole distributions in the semiconductor.

One question which arises is the rapidity of response of the electronic and hole

charge distribution in the semiconductor to an actual fairly abrupt electron transfer
with the reactant. A characteristic time for that transition U can be inferred from the

Landau-Zener-type expression for the probability P of a radiationless transition in

the following way: For an electron transfer at a "crossing" of the potential energy

surfaces for the electron transfei we have 3,26

2u2n H2.

P= 1-e _ V (29)

where H 2 is the absolute value of the electronic matrix clement for the electron

transfer and v. is the velocity at the crossing.

To answer the question regarding response time it is u.,eful to recast eq. (29), as

in eq. (30). The time for a nonstationary state of the reactant, at the curve crossing,

to undergo a charge transfer between the two nearly degenerate electronic states

-11-



there is At= An/2H 2, using a standard quantum mechanical analysis. 28 Equation

(29) can be rewritten suggestively in the form (30), using this At.

P = I-e - / at, At =AI/2H 12  (30)

where E is, effectively, the time spent by the system in the crossing region; T is defined

by a comparison of eqs. (29) and (30) to be

= ,2 H12 /vIs1 - s. (31)

An interpretation of eq. (30) is that the system passes through the intersection region

in a time -T. When this time - is small relative to the time At for the change of the
reactant's charge, there is only a small probability of the electron transfer occurring

on a passage through the crossing region, as seen, for example, in eq. (30).

With a little manipulation, using a vibrational coordinate as the reaction

coordinate, with a vibration frequency v, and, for the present, replacing the velocity

v by an average value one finds29

- H 12 /v (N k T)* (32)

Thus, the smaller the electronic interaction energy H 12 the shorter the time - spent

by the system in the vicinity of the potential energy curve crossing.

Depending on the ratio of this time scale - to the time scale for the relaxation of

the electron (or hole) charge distribution in the semiconductor, the latter may act as a

dielectric. For example, if T is relatively small, then eqs. (9) and (16) may be
appropriate for Ao. At the other limit, the response in the semiconductor may be rapid

enough, and the 3hielding large enough, that it can be treated as a metal and eq. (11)

is obtained in this limit.

-12-



A helpful discussion and survey of the theory of electron transfer at

semiconductors, and the role of X is given in ref. 11. We hope to return to this topic at

a later date.

Discussion

(i) Two Immiscible Liquid Interface

An interesting consequence of eq. (16) is that when D1
0P=D2OP and d i = d 2 = JR,

the X0 in (16) is the sum of the two electrochemical X 0's (eq. (11)), each ion being in its

own respective solvent:

X0 =- lL +xel (33)
0 0,1 0,2

We plan to apply this result elsewhere.

There are both similaries and differences between eq. (16) and the

corresponding equations in ref. 6. The 1/a1 and 1/a 2 terms are the same [e.g., eq. (4) of
ref. 6b]. The remaining part of(16) differs, though it and the corresponding terms in

ref. 6 become equal in some particular cases. The results in eq. (20) for wr and wP are

the same as those in ref. 6 (eqs. (5)-(7) of ref. 6b), when eq. (20) is specialized to the

case where the line of centers of the two reactants is normal to the interface (i.e.,

when R = d i + d2).

(ii) "Undoped" Semiconductor-Liquid Interface

As an example of eqs. (8) and (11) we compare them for the case that

D°OP=D2
OP = 2, Dil = 10 (semiconductor) and D2

s = 40. In this case and with R = 2a, the

X0 in eq. (8) has about twice the value as that in eq. (11). The reason for this large

effect is that in the metal-liquid case the image charge tends to reduce the effect of

the approaching charge on the solvent polarization, whereas in a semiconductor
(D2

8)/liquid (Dig) system it concentrates the effect of the charge in medium 1, when

D 2 <D,', and hence increases the amount of reorganization needed.

(iii) Metal-Electrolyte X0

-13-



The results in ref. 3 appear to be consistent with a comparison of some
homogeneous and heterogeneous (metal electrode) electron transfer rate constants, a

log-log plot of which appears to have a slope of roughly 0.5,30 ,31 although the scatter
m-kps the slope somewhat uncertain. The homogeneous solution k's varied by some

twenty orders of magnitude. In these systems the XL is, no doubt, non-negligible and

X\ for a homogeneous (self-exchange) reaction is twice that for the heterogeneous one
at the metal electrodes,3 and so helps preserve a slope of roughly 0.5. The slope is
predicted 3.2 7,32 to be between 0.5 and 1, depending on whether or not there is a layer of

solvent molecules on the electrode surface which prevents the ion from having R = 2a,
and depending, too, on the contribution of X, to X. This slope of 0.5 does differ from

that predicted theoretically in ref. 24, for which a very large slope of 1.9 to 2.4 was
suggested for acetonitrile on the basis of nonlocal dielectric response calculations.

The slope predicted 30 on similar grounds for dimethyl formamide as solvent was 0.7.
The predicted slope (e.g., in Figs. 5 and 6 in ref. 24) was not given for water. No ,

term was included there, since the focus was on A0. An experimental comparison of

corresponding self-exchange homogeneous and electrochemical rate constants in
acetonitrile as solvent, suitably corrected for work terms, would be useful as a test of

this rather surprising nonlocal electrostatics prediction of ref. 24.

The interpretation of homogeneous vs. electrochemical data where A, is small is

currently under active investigation. Both solvent static and dynamic effects occur,
and for these fast reactions (small A,) the variation in k's was not very large. The

most recent analysis of the data is that given in ref. 33, which illustrates some of the

complexities.

(iv) Nonlocal Dielectric Response

We have not treated in the present paper any nonlocal dielectric effects 34.35 in

the liquid. These and other effects such as short range specific interactions no doubt
occur. Apparently there is, as yet, no direct experimental measurement of nonlocal
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dielectric response parameter for polar solvents (e.g., a determination of an

orientational analog of the slow neutron scattering-determined structure factor).

Results for the nonlocal dielectric response would be obtainable from suitable

molecular dynamics (MD) computer simulations of a statistical mechanical system,

though such results would be only as good as the molecular model used in the

calculation. Such effects are physically different from specific short range electrode-

solvent and ion-solvent interactions. To distinguish them from the latter, the
nonlocal dielectric effects are presumably best investigated in MD simulations of the

ion-free and interface-free solvents. Attempts to infer them36 from experimental data

at interfaces or from data on ion-solvent interactions encounter the problem of

disentangling those effects from the other short-range effects, dielectric saturation,

for example, or various specific effects.37 38 One alternative has been to include all

such effects phenomenologically into one or more parameters,39 which are then

adjusted to best fit some data.

The derivation of eq. (1) given in ref. 16 was based on rather general linear

functional type arguments and might be expected to apply, therefore, to nonlocal

response dielectrics also. (This derivation of eq. (1) was more general than a

dielectric continuum-based derivation,40 which did assume a local dielectric

response.) Recently, we have made a continuum-based derivation using a nonlocal

response for single phase systems and eq. (1) was again obtained. 41 For the case

where there is more than one phase some assumption for the nonlocal dielectric

constant (r, r') in the vicinity of the interface is needed. One assumption in the
literature, a "specular electron reflection ansatz", is that it correlates only points r, r'

in the same phase and is zero otherwise. 42,A This approach has been used for systems

where one phase is a solid.4 2,4 (A more elaborate ansatz has also been used for a

semiconductor-vacuum system.") For a system of two dielectrics, the same approach

yields an obvious inconsistency in the limit where the two dielectrics have the same

properties. In this case the result does not reduce to the correct limit for a single

phase behavior, for which e(r, r') correlates all pairs of points, not just those on the

same side of a now only imagined boundary. (While the important property is

C- I(r,r'), it too would be incorrect in the cited limit, since e(r, r') is presumed to have a

unique inverse.) Thus, if a continuum type nonlocal formalism for liquid-liquid

systems is employed, some alternative approximation for the interfacial region would

be desirable.
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Appendix - Derivation of Eq. (25).

We calculate here the "volume" v per unit area of interface defined as in eq. (Al)
below, such that the reactant I lies wholly in phase 1 and reactant 2 lies wholly in

phase 2. Coordinates zl, 0, 4) (4D is an angle, not shown, about the z1-axis) and R are

introduced, as in Fig. la. The maximum value of 0, 0 m, for a fixed z, andR

corresponds to the arrangement in Fig. 1b, where reactant 2 just touches the
interface. Calculation of the "volume" v involves finding all configurations of the

pair, per unit area of interface, such that the conditions mentioned above are

fulfilled. At fixed z1 and R, the area element R 2 sinO dO d(D is integrated from (p = 0 to
2n and from 0 = 0 to 0a(z1 , R). The result is then integrated at fixed R from z1 = a1,

the radius of reactant 1, to the maximum value of z, z1 =R -a 2. Then, R is integrated
from R = al + a2 to -. The final result is independent of the (x, y) position along the

plane, and so is a constant in the unit area. We thus have

f IR-a 2J0 ( i ra ZR) 12n

j= ,R R 2sin0 d( dO dzt dR k(R)/k(RV R=al +a 2  .z =a I  0=0 0,o

(Al)

= n (R-a-a)2R k(R) dRk(R)
R=a 1 +a 2

inasmuch as f sinO dO equals 1 -cos 0,,a, i.e., 1 - (z, +a2 )/R. Here, k(R) is a weighting

factor, K(R) exp (- AGr1(R)/kBT], and R,,. is the R where this factor is a maximum.

The K exp (-AGr¢/kT in eq. (26) denotes, in fact, k(R,.) exp [- AG, (Rm.)/kBT].

The weighting factor typically decays exponentially with distance at large R 7.15 but
may even pass through a maximum 45 at an R close to al +a 2. If, however, in eq. (Al)
we let k(R)/k(Rma) equal exp [-(R -a, -a 2 )/AR] then the leading term from the R-

integration in eq. (Al) leads to eq. (27). (AR is usually denoted in the literature by

Equation (Al) is based on a sharp boundary of the two immiscible phases.

When instead there is some interpenetration of the two phases at the interface, the
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O,,x may be larger than the value indicated in Fig. 1. For example, if the center of ion

2 can touch the interface as a result of penetration, cos 0 is z1 /R, while if the center

of ion 1 can touch the interface z i varies from 0 to R instead of the limits indicated in

eq. (Al). In this case we obtain eq. (28) as the leading term in the integration, using

an exponential decay, as above.

For comparison, it is useful to recall the value of v when there was only one

reactant, instead of two, as in a metal-liquid system. Here, for a unit area of interface

we would have instead of eq. (27) or (28),

S=AR (A2)
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Fig. 1. (a) Coordinates for the calculation of the hypervolume v in the Appendix

and eq. (27). (b) Configuration indicating the maximum value of 0, for a

given value of z and of R.
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